
ActiveMath: An Intelligent Tutoring System for
Mathematics

Erica Melis and Jörg Siekmann

German Research Institute for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg, 66123 Saarbrücken, Germany
phone: +49 681 302 4629, fax: +49 681 302 2235

Abstract. ActiveMath is a web-based intelligent tutoring system for
mathematics. This article presents the technical and pedagogical goals
of ActiveMath, its principles of design and architecture, its knowledge
representation, and its adaptive behavior. In particular, we concentrate
on those features that rely on AI-techniques.

1 Introduction

Intelligent tutoring systems (ITSs) have been researched in AI now for
several decades. With the enormous development and increasing availabil-
ity of the Internet, the application of web-based learning systems becomes
more likely and realistic and research for intelligent features receives more
attention than before. As a result, a number of new ITS have been devel-
oped over the last five years, among them ActiveMath, a web-based,
adaptive learning environment for mathematics.

These systems strive for improving long-distance learning, for com-
plementing traditional classroom teaching, and for supporting individual
and life-long learning. Web-based systems are available on central servers
and allow a user to learn in her own environment and whenever it is
appropriate for her.

Intelligent tutoring systems are a great field of application for AI-
techniques. In a nutshell, our research for ActiveMath has used and
further developed results in

– problem solving
– rule-based systems
– knowledge representation
– user modeling ?
– adaptive systems and adaptive hyper-media
– diagnosis.



Learning environments have to meet realistic and complex needs rather
than being a specific research system for specific demonstrations such as
the famous blocksworld. Therefore, we point out important pedagogical
and technical goals that our research for ActiveMath had to satisfy.

Pedagogical Goals

ActiveMath’ design aims at supporting truly interactive, exploratory
learning and assumes the student to be responsible for her learning to
some extent. Therefore, a relative freedom for navigating through a course
and for learning choices is given and by default, the student model is
scrutable, i.e., inspectable and modifiable. Moreover, dependencies of
learning objects can be inspected in a dictionary to help the student
to learn the overall picture of a domain (e.g., analysis) and also the de-
pendencies of concepts.

Several dimensions of adaptivity to the student and her learning con-
text improve the learner’s motivation and performance. Most previous
intelligent tutor systems did not rely on an adaptive choice of content. A
reason might be that the envisioned use was mostly in schools, where tra-
ditionally every student learns the same concepts for the same use. In col-
leges and universities, however, the same subject is already taught differ-
ently for different groups of users and in different contexts, e.g., statistics
has to be taught differently for students of mathematics, for economics,
or medicine. Therefore, the adaptive choice of content to be presented as
well as examples and exercises is pivotal. In addition, an adaptation of
examples and exercises to the student’s capabilities is highly desirable in
order to keep the learner in the zone of proximal development [13] rather
than overtax or undertax her.

Moreover, web-based systems can be used in several learning con-
texts, e.g., long-distance learning, homework, and teacher-assisted learn-
ing. Personalization is required in all of them because even for teacher-
assisted learning in a computer-free classroom with, say, 30 students and
one teacher individualized learning is impossible. ActiveMath’s current
version provides adaptive content, adaptive presentation features, and
adaptive appearance.

Technical Goals

Building quality hyper-media content is a time-consuming and costly pro-
cess, hence the content should be reusable in different contexts. However,
most of today’s interactive textbooks consist of a collection of predefined



documents, typically canned HTML pages and multimedia animations. This
situation makes a reuse in other contexts and a re-combination of the en-
coded knowledge impossible and inhibits a radical adaptation of course
presentation and content to the user’s needs.
ActiveMath’ knowledge representation contributes to re-usability and
interoperability. In particular, it is compliant with the emerging knowl-
edge representation and communication standards such as Dublin Core,
OpenMath, MathML, and LOM1. Some of the buzzwords here are metadata,
ontological XML, (OMDoc [8], and standardized content packaging. Such
features of knowledge representations will ensure a long-term employment
of the new technologies in browsers and other devices. In order to use
the potential power of existing web-based technology e-Learning systems
need an open architecture to integrate and connect to new components
including student management systems such as WebCT, assessment tools,
collaboration tools, and problem solving tools.

Organization of the Article This article provides an overview of the cur-
rent ActiveMath system. It describes some main features in more detail,
in particular, the architecture and its components, the knowledge repre-
sentation, the student model and the adaptation based on the information
from the student model.

2 Architecture

The architecture of ActiveMath, as sketched in Figure 1, strictly re-
alizes the principle of separation of (declarative) knowledge and func-
tionalities as well as the separation of different kinds of knowledge. For
instance, pedagogical knowledge is stored in a pedagogical rule base, the
educational content is stored in MBase, and the knowledge about the
user is stored in the student model. This principle has proved valuable in
many AI-applications and eases modifications as well as configurability
and reuse of the system.

ActiveMath has a client-server architecture whose client can be re-
stricted to a browser. This architecture serves not only the openness but
also the platform independence. On the client side, a browser – netscape
higher than 6, Mozilla, or IE with MathPlayer – is sufficient to work with
ActiveMath. On the server-side components of ActiveMath have been
deliberately designed in a modular way in order to guarantee exchange-
ability and robustness.
1 http://ltsc.ieee.org/wg12/



BrowserW
eb

se
rv

er

Pedagogical
Rules

S
es

si
on

 M
an

ag
er

html

request

MBase

Proxy

http

Omega−
GUI

Console
CAS−

Student Model

HistoryProfile Omega

presentation

engine

Course
Generator

CAS

Fig. 1. Architecture of ActiveMath

When the user has chosen her goal concepts and learning scenario, the
session manager sends a request to the course generator. The course gen-
erator is responsible for choosing and arranging the content to be learned.
The course generator contacts the mathematical knowledge base in order
to fetch the identifiers (IDs) of the mathematical concepts that are re-
quired for understanding the goal concepts, queries the student model in
order to find out about the user’s prior knowledge and preferences, and
uses pedagogical rules to select, annotate, and arrange the content – in-
cluding examples and exercises – in a way that is suitable for the learner.
The resulting instructional graph, a list of IDs, is sent to the presentation
engine that retrieves the actual mathematical content corresponding to
the IDs and that transforms the XML-data to output-pages which are then
presented via the user’s browser.

The course generator and the suggestion mechanism [10] work with the
rule-based system Jess [6] that evaluates the (pedagogical) rules in order
to decide which particular adaptation and content to select and which
actions to suggest. Jess uses the Rete algorithm [5] for optimization.

External systems such as the computer algebra systems Maple and
MuPad and the proof planner Multi are integrated with ActiveMath.



They serve as cognitive tools [9] and support the learner in performing
complex interactive exercises and they assist in producing feedback by
evaluating the learner’s input.Also, a diagnosis is passed to the student
model in order to update the model.

In these exercises, ActiveMath does not necessarily guide the user
strictly along a predefined expert solution. It may only evaluate whether
the student’s input is mathematically equivalent to an admissible sub-
goal, i.e., maybe irrelevant but not outside the solution space (see [3]).
Moreover, the external systems can support the user by automated prob-
lem solving, i.e., they can take over certain parts in the problem solving
process and thereby help the user to focus on certain learning tasks and
to delegate routine tasks.

Actually, most diagnoses are known to be AI-hard problems. Most
ITSs encode the possible problem solving steps and the most typical mis-
conceptions into their solution space or into systems that execute them.
From this encoding, the system diagnoses the misconception of a student.
This is, however, (1) infeasible in realistic applications with large solu-
tion spaces and (2) it is in general impossible to represent all potential
misconceptions of a student [17].

The presentation engine generates personalized web pages based on
two frameworks: Maverick and Velocity. Maverick2 is a minimalist MVC
framework for web publishing using Java and J2EE, focusing solely on
MVC logic. It provides a wiring between URLs, Java controller classes
and view templates.

The presentation engine is a reusable component that takes a struc-
ture of OMDocs and transforms them into a presentation output that can
be PDF (print format) or HTML with different maths-presentations – Uni-
code or MathML – (screen format) [7]. Basically, the presentation pipeline
comprises two stages: stage 1 encompasses Fetching, Pre-Processing and
Transformation, while stage 2 consists of Assembly, Personalization and
optional Compilation. Stage 1 deals with individual content fragments or
items, which are written in OMDoc and stored in a knowledge base. At
this stage, content items do not depend on the user who is to view them.
They have unique identifiers and can be handled separately. It is only in
stage 2 that items are composed to user-specific pages.

2 Maverick: http://mav.sourceforge.net/



3 Adaptivity

ActiveMath adapts its course generation (and presentation) to the stu-
dent’s

– technical equipment (customization)

– environment variables, e.g., curriculum, language, field of study (con-
textualization) and

– her cognitive and educational needs and preferences such as learning
goals, and prerequisite knowledge (personalization).

As for personalization, individual preferences (such as the style of
presentation), goal-competencies, and mastery-level are considered by
the course generator. On the one hand, the goal-competencies are char-
acterized by concepts that are to be learned and on the other hand,
by the competency-level to be achieved: knowledge (k), comprehension
(c), or application (a). The learner can initialize her student model by
self-assessment of her mastery-level of concepts and choose her learning
goals and learning scenario, for instance, the preparation for an exam
or learning from scratch for k-competency level. The course generator
processes this information and updates the student model and generates
pages/sessions as depicted in the screenshots of Figure 2 and 3. These two
screenshots differ in the underlying scenarios as the captions indicate.

Adaptation to the capabilities of the learner occurs in course gen-
eration as well as in the suggestion mechanism. The course generation
checks whether the mastery-level of prerequisite concepts is sufficient for
the goal competency. If not, it presents the missing concepts and/or expla-
nations, examples, exercises for these concepts to the learner when a new
session is requested. The suggestion mechanism acts dynamically in re-
sponse to the student’s activities. Essentially, this mechanism works with
two blackboards, a diagnosis blackboard and a suggestion blackboard on
which particular knowledge sources operate.

We also investigated special scenarios that support a student’s meta-
cognitive activities, such as those proposed in the seminal book ’How to
Solve it’ by Polya [15]. A Polya-scenario structures the problem solutions
by introducing headlines such as “understand the problem”, “make a
plan”, “execute the plan”, and “look back at the solution”. It augments
and structures exercises with additional prompts similar to the above
headlines [12].



Fig. 2. A screen shot of an ActiveMath session for exam preparation

4 Student Modeling

User modeling has been a research area in AI for a long time. Actually,
it started with early student modeling and still continues with the in-
vestigation of representational issues as well as diagnostic and updating
techniques.

As ActiveMath’ presentation is user-adaptive, it needs to incorpo-
rate persistent information about the user as well as a representation of
the user’s learning progress. Therefore, ‘static’ (wrt. the current session)
properties such as field, scenario, goal concepts, and preferences as well
as the ‘dynamic’ properties such as the mastery values for concepts and
the student’s actual behavior, are stored in the student model. These dif-



Fig. 3. k-level session of ActiveMath

ferent types of information are stored separately in the history and the
static and dynamic profiles.

The profile is initialized with the learner’s entries submitted to Ac-
tiveMath’ registration page which describe the preferences (static), sce-
nario, goals (static for the current session), and self-assessment values for
knowledge, comprehension, and application of concepts (dynamic).

The history component stores the information about the learner’s ac-
tions. Its elements contain information such as the IDs of the content of
a read page or the ID of an exercise, the reading time, and the success
rate of the exercise. Meanwhile, we developed a “poor man’s eye-tracker”
which allows to trace the student’s attention and reading time in detail.



To represent the concept mastery assessment, the current (dynamic)
profile contains values for a subset of the competences of Bloom’s mastery
taxonomy [2]:
– Knowledge
– Comprehension
– Application.

Finishing an exercise or going to another page triggers an updating
process of the student model. Since different types of learner actions can
exhibit different competencies, reading a concept mainly updates ’knowl-
edge’ values, following examples mainly updates ’comprehension’, and
solving exercises mainly updates ’application’. When the student model
receives the notification that a student has finished reading a page, an
evaluator fetches the list of its items and their types (concept, example,
. . .) and delivers an update of the values of those items. When the learner
finishes an exercise, an appropriate evaluator delivers an update of the
values of the involved concepts that depends on the difficulty and on the
rating of how successful the solution was.

The student model is inspectable and modifiable by the student as
shown in Figure 4. Our experience is that students tend to inspect their
student model in order to plan what to learn next.

5 Knowledge Representation

As opposed to the purely syntactic representation formats for mathe-
matical knowledge such as LaTex or HTML, the knowledge representation
used by ActiveMath is the semantic XML-language OMDoc which is an
extension of OpenMath [4]. OpenMath provides a collection of OpenMath
objects together with a grammar for the representation of mathematical
objects and sets of standardized symbols (the content-dictionaries). That
is, OpenMath talks about objects rather than syntax.

Since OpenMath does not have any means to represent the content of a
mathematical document nor its structure, OMDoc defines logical units such
as “definition”, “theorem”, and “proof”. In addition, the purely mathe-
matical OMDoc is augmented by educational metadata such as difficulty
of a learning object or type of an exercise.

This representation has several advantages, among them
– it is human and machine understandable
– the presentation of mathematical objects can in principle be copied

and pasted



Fig. 4. Inspection of the student model (mastery-level)

– the presentations can automatically and dynamically be linked to con-
cepts and learning objects and thus, found by ActiveMath’s dictio-
nary when clicking on a concept or formula in the course.
For more details, see [11].

6 Conclusion, Related and Future Work

The intelligent tutoring systems group – at the DFKI Saarbrücken and
at the University of Saarland – has been developing the web-based ITS
ActiveMath now for several years. A demo (and demo guide) is available
at http://www.activemath.org.

This system is configurable with pedagogical strategies, content, and
presentational style sheets as well as with external problem solving sys-
tems. It employs a number of AI-techniques to realize adaptive course gen-
eration, student modeling, feedback, interactive exercises, and a knowl-
edge representation that is expedient for the semantic Web.

Related Work Most web-based learning systems (particularly commer-
cial ones) offer fixed multimedia web pages and facilities for user man-



agement and communication and most of them lack support for truly
interactive problem solving and user-adaptivity. Moreover, they use pro-
prietary knowledge representation formats rather than a standardized
knowledge representation which is exchangeable between systems. Some
user-adaptivity is offered by systems such as ELM-ART [18] and Metalink
[14].

During the last decades research on pedagogy in the mathematics
recognized that students learn mathematics more effectively, if the tradi-
tional rote learning of formulas and procedures is supplemented with the
possibility to explore a broad range of problems and problem situations
[16]. In particular, the international comparative study of mathematics
teaching, TIMSS [1], has shown (1) that teaching with an orientation to-
wards active problem solving yields better learning results in the sense
that the acquired knowledge is more readily available and applicable espe-
cially in new contexts and (2) that a reflection about the problem solving
activities and methods yields a deeper understanding and better perfor-
mance.

Future Work We are now working on cognitively motivated extensions of
ActiveMath by new types of examples and exercises that have shown
their merit for learning. In particular, the student model will be enhanced
by information about the learner’s motivation such that the system can
properly react to excitement, boredom and other motivational states.

Other extensions are being realized in the EU-project LeActiveMath
that investigates natural language facilitiesfor a tutorial dialogue in in-
teractive exercises and dialogues about the student model.

Acknowledgment The system reported in this article is the result of
work of the ActiveMath-Group and we thank its members Eric An-
dres, Michael Dietrich, Adrian Frischauf, Alberto Gonzales Palomo, Paul
Libbrecht, Carsten Ullrich, and Stefan Winterstein.

References

1. J. Baumert, R. Lehmann, M. Lehrke, B. Schmitz, M. Clausen, I. Hosenfeld,
O. Köller, and J. Neubrand. Mathematisch-naturwissenschaftlicher Unterricht im
internationalen Vergleich. Leske und Budrich, 1997.

2. B.S. Bloom, editor. Taxonomy of educational objectives: The classification of educa-
tional goals: Handbook I, cognitive domain. Longmans, Green, New York, Toronto,
1956.

3. J. Buedenbender, E. Andres, A. Frischauf, G. Goguadze, P. Libbrecht, E. Melis,
and C. Ullrich. Using computer algebra systems as cognitive tools. In S.A. Cerri,



G. Gouarderes, and F. Paraguacu, editors, 6th International Conference on In-
telligent Tutor Systems (ITS-2002), number 2363 in Lecture Notes in Computer
Science, pages 802–810. Springer-Verlag, 2002.

4. O. Caprotti and A. M. Cohen. Draft of the open math standard. Open Math
Consortium, http://www.nag.co.uk/projects/OpenMath/omstd/, 1998.

5. C.L. Forgy. Rete: a fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence, pages 17–37, 1982.

6. E. Friedman-Hill. Jess, the java expert system shell. Technical Report SAND98-
8206, Sandia National Laboratories, 1997.

7. A. Gonzalez-Palomo, P. Libbrecht, and C. Ullrich. A presentation architecture for
individualized content. In The Twelfth International World Wide Web Conference,
2003. submitted.

8. M. Kohlhase. OMDoc: Towards an internet standard for the administration, distribu-
tion and teaching of mathematical knowledge. In Proceedings Artificial Intelligence
and Symbolic Computation AISC’2000, 2000.

9. S. Lajoie and S. Derry, editors. Computers as Cognitive Tools. Erlbaum, Hillsdale,
NJ, 1993.

10. E. Melis and E. Andres. Global feedback in ActiveMath. In Proceedings of
the World Conference on E-Learning in Corporate, Government, Healthcare, and
Higher Education (eLearn-2003), pages 1719–1724. AACE, 2003.

11. E. Melis, J. Buedenbender E. Andres, A. Frischauf, G. Goguadse, P. Libbrecht,
M. Pollet, and C. Ullrich. Knowledge representation and management in Active-
Math. International Journal on Artificial Intelligence and Mathematics, Special
Issue on Management of Mathematical Knowledge, 38(1-3):47–64, 2003.

12. E. Melis and C. Ullrich. How to teach it – Polya-scenarios in ActiveMath. In
U. Hoppe, F. Verdejo, and J. Kay, editors, AI in Education, AIED-2003, pages
141–147. IOS Press, 2003.

13. T. Murray and I. Arroyo. Towards measuring and maintaining the zone of proximal
development in adaptive instructional systems. In S.A. Cerri, G. Gouarderes, and
F.Paraguacu, editors, Intelligent Tutoring Systems, 6th International Conference,
ITS 2002, volume 2363 of LNCS, pages 749–758. Springer-Verlag, 2002.

14. T. Murray, C. Condit, T. Shen, J. Piemonte, and S. Khan. Metalinks - a frame-
work and authoring tool for adaptive hypermedia. In S.P. Lajoie and M. Vivet,
editors, Proceedings of the International Conference on Artificial Intelligence and
Education, pages 744–746. IOS Press, 1999.

15. G. Polya. How to Solve it. Princeton University Press, Princeton, 1945.
16. A.H. Schoenfeld, editor. A Source Book for College Mathematics Teaching. Math-

ematical Association of America, Washington, DC, 1990.
17. K. VanLehn, C. Lynch, L. Taylor, A. Weinstein, R. Shelby, K. Schulze, D. Treacy,

and M. Wintersgill. Minimally invasive tutoring of complex physics problem solv-
ing. In S.A. Cerri, G. Gouarderes, and F. Paraguacu, editors, Intelligent Tutoring
Systems, 6th International Conference, ITS 2002, number 2363 in LNCS, pages
367–376. Springer-Verlag, 2002.

18. G. Weber and P. Brusilovsky. ELM-ART an adaptive versatile system for web-
based instruction. Artificial Intelligence and Education, 2001.


